Skip to content

Images Like: API Documentation

Open an Image

ngio.open_image

open_image(
    store: StoreOrGroup,
    path: str | None = None,
    pixel_size: PixelSize | None = None,
    strict: bool = True,
    cache: bool = False,
    mode: AccessModeLiteral = "r+",
) -> Image

Open a single level image from an OME-Zarr image.

Parameters:

  • store (StoreOrGroup) –

    The Zarr store or group to create the image in.

  • path (str | None, default: None ) –

    The path to the image in the ome_zarr file.

  • pixel_size (PixelSize | None, default: None ) –

    The pixel size of the image.

  • strict (bool, default: True ) –

    Only used if the pixel size is provided. If True, the pixel size must match the image pixel size exactly. If False, the closest pixel size level will be returned.

  • cache (bool, default: False ) –

    Whether to use a cache for the zarr group metadata.

  • mode (AccessModeLiteral, default: 'r+' ) –

    The access mode for the image. Defaults to "r+".

Source code in ngio/images/_ome_zarr_container.py
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
def open_image(
    store: StoreOrGroup,
    path: str | None = None,
    pixel_size: PixelSize | None = None,
    strict: bool = True,
    cache: bool = False,
    mode: AccessModeLiteral = "r+",
) -> Image:
    """Open a single level image from an OME-Zarr image.

    Args:
        store (StoreOrGroup): The Zarr store or group to create the image in.
        path (str | None): The path to the image in the ome_zarr file.
        pixel_size (PixelSize | None): The pixel size of the image.
        strict (bool): Only used if the pixel size is provided. If True, the
                pixel size must match the image pixel size exactly. If False, the
                closest pixel size level will be returned.
        cache (bool): Whether to use a cache for the zarr group metadata.
        mode (AccessModeLiteral): The
            access mode for the image. Defaults to "r+".
    """
    group_handler = ZarrGroupHandler(store, cache, mode)
    images_container = ImagesContainer(group_handler)
    return images_container.get(
        path=path,
        pixel_size=pixel_size,
        strict=strict,
    )

ngio.Image Class Reference

ngio.Image

Image(
    group_handler: ZarrGroupHandler,
    path: str,
    meta_handler: ImageMetaHandler | None,
)

Bases: AbstractImage[ImageMetaHandler]

A class to handle a single image (or level) in an OME-Zarr image.

This class is meant to be subclassed by specific image types.

Initialize the Image at a single level.

Parameters:

  • group_handler (ZarrGroupHandler) –

    The Zarr group handler.

  • path (str) –

    The path to the image in the ome_zarr file.

  • meta_handler (ImageMetaHandler | None) –

    The image metadata handler.

Source code in ngio/images/_image.py
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
def __init__(
    self,
    group_handler: ZarrGroupHandler,
    path: str,
    meta_handler: ImageMetaHandler | None,
) -> None:
    """Initialize the Image at a single level.

    Args:
        group_handler: The Zarr group handler.
        path: The path to the image in the ome_zarr file.
        meta_handler: The image metadata handler.

    """
    if meta_handler is None:
        meta_handler = find_image_meta_handler(group_handler)
    super().__init__(
        group_handler=group_handler, path=path, meta_handler=meta_handler
    )

path property

path: str

Return the path of the image.

meta_handler property

meta_handler: _image_handler

Return the metadata.

dataset property

dataset: Dataset

Return the dataset of the image.

dimensions property

dimensions: Dimensions

Return the dimensions of the image.

pixel_size property

pixel_size: PixelSize

Return the pixel size of the image.

axes_handler property

axes_handler: AxesHandler

Return the axes handler of the image.

axes property

axes: tuple[str, ...]

Return the axes of the image.

zarr_array property

zarr_array: Array

Return the Zarr array.

shape property

shape: tuple[int, ...]

Return the shape of the image.

dtype property

dtype: str

Return the dtype of the image.

chunks property

chunks: tuple[int, ...]

Return the chunks of the image.

is_3d property

is_3d: bool

Return True if the image is 3D.

is_2d property

is_2d: bool

Return True if the image is 2D.

is_time_series property

is_time_series: bool

Return True if the image is a time series.

is_2d_time_series property

is_2d_time_series: bool

Return True if the image is a 2D time series.

is_3d_time_series property

is_3d_time_series: bool

Return True if the image is a 3D time series.

is_multi_channels property

is_multi_channels: bool

Return True if the image is multichannel.

space_unit property

space_unit: str | None

Return the space unit of the image.

time_unit property

time_unit: str | None

Return the time unit of the image.

meta property

meta: NgioImageMeta

Return the metadata.

channels_meta property

channels_meta: ChannelsMeta

Return the channels metadata.

channel_labels property

channel_labels: list[str]

Return the channels of the image.

wavelength_ids property

wavelength_ids: list[str | None]

Return the list of wavelength of the image.

num_channels property

num_channels: int

Return the number of channels.

has_axis

has_axis(axis: str) -> bool

Return True if the image has the given axis.

Source code in ngio/images/_abstract_image.py
174
175
176
def has_axis(self, axis: str) -> bool:
    """Return True if the image has the given axis."""
    return self.axes_handler.has_axis(axis)

roi

roi(name: str | None = 'image') -> Roi

Return the ROI covering the entire image.

Source code in ngio/images/_abstract_image.py
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
def roi(self, name: str | None = "image") -> Roi:
    """Return the ROI covering the entire image."""
    dim_x = self.dimensions.get("x")
    dim_y = self.dimensions.get("y")
    assert dim_x is not None and dim_y is not None
    dim_z = self.dimensions.get("z")
    z = None if dim_z is None else 0
    dim_t = self.dimensions.get("t")
    t = None if dim_t is None else 0
    roi_px = RoiPixels(
        name=name,
        x=0,
        y=0,
        z=z,
        t=t,
        x_length=dim_x,
        y_length=dim_y,
        z_length=dim_z,
        t_length=dim_t,
    )
    return roi_px.to_roi(pixel_size=self.pixel_size)

build_image_roi_table

build_image_roi_table(
    name: str | None = "image",
) -> RoiTable

Build the ROI table containing the ROI covering the entire image.

Source code in ngio/images/_abstract_image.py
467
468
469
def build_image_roi_table(self, name: str | None = "image") -> RoiTable:
    """Build the ROI table containing the ROI covering the entire image."""
    return RoiTable(rois=[self.roi(name=name)])

require_dimensions_match

require_dimensions_match(
    other: AbstractImage, allow_singleton: bool = False
) -> None

Assert that two images have matching spatial dimensions.

Parameters:

  • other (AbstractImage) –

    The other image to compare to.

  • allow_singleton (bool, default: False ) –

    If True, allow singleton dimensions to be compatible with non-singleton dimensions.

Raises:

  • NgioValueError

    If the images do not have compatible dimensions.

Source code in ngio/images/_abstract_image.py
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
def require_dimensions_match(
    self,
    other: "AbstractImage",
    allow_singleton: bool = False,
) -> None:
    """Assert that two images have matching spatial dimensions.

    Args:
        other: The other image to compare to.
        allow_singleton: If True, allow singleton dimensions to be
            compatible with non-singleton dimensions.

    Raises:
        NgioValueError: If the images do not have compatible dimensions.
    """
    self.dimensions.require_dimensions_match(
        other.dimensions, allow_singleton=allow_singleton
    )

check_if_dimensions_match

check_if_dimensions_match(
    other: AbstractImage, allow_singleton: bool = False
) -> bool

Check if two images have matching spatial dimensions.

Parameters:

  • other (AbstractImage) –

    The other image to compare to.

  • allow_singleton (bool, default: False ) –

    If True, allow singleton dimensions to be compatible with non-singleton dimensions.

Returns:

  • bool ( bool ) –

    True if the images have matching dimensions, False otherwise.

Source code in ngio/images/_abstract_image.py
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
def check_if_dimensions_match(
    self,
    other: "AbstractImage",
    allow_singleton: bool = False,
) -> bool:
    """Check if two images have matching spatial dimensions.

    Args:
        other: The other image to compare to.
        allow_singleton: If True, allow singleton dimensions to be
            compatible with non-singleton dimensions.

    Returns:
        bool: True if the images have matching dimensions, False otherwise.
    """
    return self.dimensions.check_if_dimensions_match(
        other.dimensions, allow_singleton=allow_singleton
    )

require_axes_match

require_axes_match(other: AbstractImage) -> None

Assert that two images have compatible axes.

Parameters:

  • other (AbstractImage) –

    The other image to compare to.

Raises:

  • NgioValueError

    If the images do not have compatible axes.

Source code in ngio/images/_abstract_image.py
509
510
511
512
513
514
515
516
517
518
519
520
521
def require_axes_match(
    self,
    other: "AbstractImage",
) -> None:
    """Assert that two images have compatible axes.

    Args:
        other: The other image to compare to.

    Raises:
        NgioValueError: If the images do not have compatible axes.
    """
    self.dimensions.require_axes_match(other.dimensions)

check_if_axes_match

check_if_axes_match(other: AbstractImage) -> bool

Check if two images have compatible axes.

Parameters:

  • other (AbstractImage) –

    The other image to compare to.

Returns:

  • bool ( bool ) –

    True if the images have compatible axes, False otherwise.

Source code in ngio/images/_abstract_image.py
523
524
525
526
527
528
529
530
531
532
533
534
535
536
def check_if_axes_match(
    self,
    other: "AbstractImage",
) -> bool:
    """Check if two images have compatible axes.

    Args:
        other: The other image to compare to.

    Returns:
        bool: True if the images have compatible axes, False otherwise.

    """
    return self.dimensions.check_if_axes_match(other.dimensions)

require_rescalable

require_rescalable(other: AbstractImage) -> None

Assert that two images can be rescaled to each other.

For this to be true, the images must have the same axes, and the pixel sizes must be compatible (i.e. one can be scaled to the other).

Parameters:

  • other (AbstractImage) –

    The other image to compare to.

Raises:

  • NgioValueError

    If the images cannot be scaled to each other.

Source code in ngio/images/_abstract_image.py
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
def require_rescalable(
    self,
    other: "AbstractImage",
) -> None:
    """Assert that two images can be rescaled to each other.

    For this to be true, the images must have the same axes, and
    the pixel sizes must be compatible (i.e. one can be scaled to the other).

    Args:
        other: The other image to compare to.

    Raises:
        NgioValueError: If the images cannot be scaled to each other.
    """
    self.dimensions.require_rescalable(other.dimensions)

check_if_rescalable

check_if_rescalable(other: AbstractImage) -> bool

Check if two images can be rescaled to each other.

For this to be true, the images must have the same axes, and the pixel sizes must be compatible (i.e. one can be scaled to the other).

Parameters:

  • other (AbstractImage) –

    The other image to compare to.

Returns:

  • bool ( bool ) –

    True if the images can be rescaled to each other, False otherwise.

Source code in ngio/images/_abstract_image.py
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
def check_if_rescalable(
    self,
    other: "AbstractImage",
) -> bool:
    """Check if two images can be rescaled to each other.

    For this to be true, the images must have the same axes, and
    the pixel sizes must be compatible (i.e. one can be scaled to the other).

    Args:
        other: The other image to compare to.

    Returns:
        bool: True if the images can be rescaled to each other, False otherwise.
    """
    return self.dimensions.check_if_rescalable(other.dimensions)

get_channel_idx

get_channel_idx(
    channel_label: str | None = None,
    wavelength_id: str | None = None,
) -> int

Get the index of a channel by its label or wavelength ID.

Source code in ngio/images/_image.py
150
151
152
153
154
155
156
def get_channel_idx(
    self, channel_label: str | None = None, wavelength_id: str | None = None
) -> int:
    """Get the index of a channel by its label or wavelength ID."""
    return self.channels_meta.get_channel_idx(
        channel_label=channel_label, wavelength_id=wavelength_id
    )

get_as_numpy

get_as_numpy(
    channel_selection: ChannelSlicingInputType = None,
    axes_order: Sequence[str] | None = None,
    transforms: Sequence[TransformProtocol] | None = None,
    **slicing_kwargs: slice | int | Sequence[int] | None,
) -> ndarray

Get the image as a numpy array.

Parameters:

  • channel_selection (ChannelSlicingInputType, default: None ) –

    Select a specific channel by label. If None, all channels are returned. Alternatively, you can slice arbitrary channels using the slice_kwargs (c=[0, 2]).

  • axes_order (Sequence[str] | None, default: None ) –

    The order of the axes to return the array.

  • transforms (Sequence[TransformProtocol] | None, default: None ) –

    The transforms to apply to the array.

  • **slicing_kwargs (slice | int | Sequence[int] | None, default: {} ) –

    The slices to get the array.

Returns:

  • ndarray

    The array of the region of interest.

Source code in ngio/images/_image.py
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
def get_as_numpy(
    self,
    channel_selection: ChannelSlicingInputType = None,
    axes_order: Sequence[str] | None = None,
    transforms: Sequence[TransformProtocol] | None = None,
    **slicing_kwargs: slice | int | Sequence[int] | None,
) -> np.ndarray:
    """Get the image as a numpy array.

    Args:
        channel_selection: Select a specific channel by label.
            If None, all channels are returned.
            Alternatively, you can slice arbitrary channels
            using the slice_kwargs (c=[0, 2]).
        axes_order: The order of the axes to return the array.
        transforms: The transforms to apply to the array.
        **slicing_kwargs: The slices to get the array.

    Returns:
        The array of the region of interest.
    """
    _slicing_kwargs = add_channel_selection_to_slicing_dict(
        image=self, channel_selection=channel_selection, slicing_dict=slicing_kwargs
    )
    return self._get_as_numpy(
        axes_order=axes_order, transforms=transforms, **_slicing_kwargs
    )

get_roi_as_numpy

get_roi_as_numpy(
    roi: Roi | RoiPixels,
    channel_selection: ChannelSlicingInputType = None,
    axes_order: Sequence[str] | None = None,
    transforms: Sequence[TransformProtocol] | None = None,
    **slicing_kwargs: SlicingInputType,
) -> ndarray

Get the image as a numpy array for a region of interest.

Parameters:

  • roi (Roi | RoiPixels) –

    The region of interest to get the array.

  • channel_selection (ChannelSlicingInputType, default: None ) –

    Select a what subset of channels to return. If None, all channels are returned.

  • axes_order (Sequence[str] | None, default: None ) –

    The order of the axes to return the array.

  • transforms (Sequence[TransformProtocol] | None, default: None ) –

    The transforms to apply to the array.

  • **slicing_kwargs (SlicingInputType, default: {} ) –

    The slices to get the array.

Returns:

  • ndarray

    The array of the region of interest.

Source code in ngio/images/_image.py
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
def get_roi_as_numpy(
    self,
    roi: Roi | RoiPixels,
    channel_selection: ChannelSlicingInputType = None,
    axes_order: Sequence[str] | None = None,
    transforms: Sequence[TransformProtocol] | None = None,
    **slicing_kwargs: SlicingInputType,
) -> np.ndarray:
    """Get the image as a numpy array for a region of interest.

    Args:
        roi: The region of interest to get the array.
        channel_selection: Select a what subset of channels to return.
            If None, all channels are returned.
        axes_order: The order of the axes to return the array.
        transforms: The transforms to apply to the array.
        **slicing_kwargs: The slices to get the array.

    Returns:
        The array of the region of interest.
    """
    _slicing_kwargs = add_channel_selection_to_slicing_dict(
        image=self, channel_selection=channel_selection, slicing_dict=slicing_kwargs
    )
    return self._get_roi_as_numpy(
        roi=roi, axes_order=axes_order, transforms=transforms, **_slicing_kwargs
    )

get_as_dask

get_as_dask(
    channel_selection: ChannelSlicingInputType = None,
    axes_order: Sequence[str] | None = None,
    transforms: Sequence[TransformProtocol] | None = None,
    **slicing_kwargs: SlicingInputType,
) -> Array

Get the image as a dask array.

Parameters:

  • channel_selection (ChannelSlicingInputType, default: None ) –

    Select a what subset of channels to return. If None, all channels are returned.

  • axes_order (Sequence[str] | None, default: None ) –

    The order of the axes to return the array.

  • transforms (Sequence[TransformProtocol] | None, default: None ) –

    The transforms to apply to the array.

  • **slicing_kwargs (SlicingInputType, default: {} ) –

    The slices to get the array.

Returns:

  • Array

    The dask array of the region of interest.

Source code in ngio/images/_image.py
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
def get_as_dask(
    self,
    channel_selection: ChannelSlicingInputType = None,
    axes_order: Sequence[str] | None = None,
    transforms: Sequence[TransformProtocol] | None = None,
    **slicing_kwargs: SlicingInputType,
) -> da.Array:
    """Get the image as a dask array.

    Args:
        channel_selection: Select a what subset of channels to return.
            If None, all channels are returned.
        axes_order: The order of the axes to return the array.
        transforms: The transforms to apply to the array.
        **slicing_kwargs: The slices to get the array.

    Returns:
        The dask array of the region of interest.
    """
    _slicing_kwargs = add_channel_selection_to_slicing_dict(
        image=self, channel_selection=channel_selection, slicing_dict=slicing_kwargs
    )
    return self._get_as_dask(
        axes_order=axes_order, transforms=transforms, **_slicing_kwargs
    )

get_roi_as_dask

get_roi_as_dask(
    roi: Roi | RoiPixels,
    channel_selection: ChannelSlicingInputType = None,
    axes_order: Sequence[str] | None = None,
    transforms: Sequence[TransformProtocol] | None = None,
    **slicing_kwargs: SlicingInputType,
) -> Array

Get the image as a dask array for a region of interest.

Parameters:

  • roi (Roi | RoiPixels) –

    The region of interest to get the array.

  • channel_selection (ChannelSlicingInputType, default: None ) –

    Select a what subset of channels to return. If None, all channels are returned.

  • axes_order (Sequence[str] | None, default: None ) –

    The order of the axes to return the array.

  • transforms (Sequence[TransformProtocol] | None, default: None ) –

    The transforms to apply to the array.

  • **slicing_kwargs (SlicingInputType, default: {} ) –

    The slices to get the array.

Returns:

  • Array

    The dask array of the region of interest.

Source code in ngio/images/_image.py
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
def get_roi_as_dask(
    self,
    roi: Roi | RoiPixels,
    channel_selection: ChannelSlicingInputType = None,
    axes_order: Sequence[str] | None = None,
    transforms: Sequence[TransformProtocol] | None = None,
    **slicing_kwargs: SlicingInputType,
) -> da.Array:
    """Get the image as a dask array for a region of interest.

    Args:
        roi: The region of interest to get the array.
        channel_selection: Select a what subset of channels to return.
            If None, all channels are returned.
        axes_order: The order of the axes to return the array.
        transforms: The transforms to apply to the array.
        **slicing_kwargs: The slices to get the array.

    Returns:
        The dask array of the region of interest.
    """
    _slicing_kwargs = add_channel_selection_to_slicing_dict(
        image=self, channel_selection=channel_selection, slicing_dict=slicing_kwargs
    )
    return self._get_roi_as_dask(
        roi=roi, axes_order=axes_order, transforms=transforms, **_slicing_kwargs
    )

get_array

get_array(
    channel_selection: ChannelSlicingInputType = None,
    axes_order: Sequence[str] | None = None,
    transforms: Sequence[TransformProtocol] | None = None,
    mode: Literal["numpy", "dask"] = "numpy",
    **slicing_kwargs: SlicingInputType,
) -> ndarray | Array

Get the image as a zarr array.

Parameters:

  • channel_selection (ChannelSlicingInputType, default: None ) –

    Select a what subset of channels to return. If None, all channels are returned.

  • axes_order (Sequence[str] | None, default: None ) –

    The order of the axes to return the array.

  • transforms (Sequence[TransformProtocol] | None, default: None ) –

    The transforms to apply to the array.

  • mode (Literal['numpy', 'dask'], default: 'numpy' ) –

    The object type to return. Can be "dask", "numpy".

  • **slicing_kwargs (SlicingInputType, default: {} ) –

    The slices to get the array.

Returns:

  • ndarray | Array

    The zarr array of the region of interest.

Source code in ngio/images/_image.py
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
def get_array(
    self,
    channel_selection: ChannelSlicingInputType = None,
    axes_order: Sequence[str] | None = None,
    transforms: Sequence[TransformProtocol] | None = None,
    mode: Literal["numpy", "dask"] = "numpy",
    **slicing_kwargs: SlicingInputType,
) -> np.ndarray | da.Array:
    """Get the image as a zarr array.

    Args:
        channel_selection: Select a what subset of channels to return.
            If None, all channels are returned.
        axes_order: The order of the axes to return the array.
        transforms: The transforms to apply to the array.
        mode: The object type to return.
            Can be "dask", "numpy".
        **slicing_kwargs: The slices to get the array.

    Returns:
        The zarr array of the region of interest.
    """
    _slicing_kwargs = add_channel_selection_to_slicing_dict(
        image=self, channel_selection=channel_selection, slicing_dict=slicing_kwargs
    )
    return self._get_array(
        axes_order=axes_order, mode=mode, transforms=transforms, **_slicing_kwargs
    )

get_roi

get_roi(
    roi: Roi | RoiPixels,
    channel_selection: ChannelSlicingInputType = None,
    axes_order: Sequence[str] | None = None,
    transforms: Sequence[TransformProtocol] | None = None,
    mode: Literal["numpy", "dask"] = "numpy",
    **slicing_kwargs: SlicingInputType,
) -> ndarray | Array

Get the image as a zarr array for a region of interest.

Parameters:

  • roi (Roi | RoiPixels) –

    The region of interest to get the array.

  • channel_selection (ChannelSlicingInputType, default: None ) –

    Select a what subset of channels to return. If None, all channels are returned.

  • axes_order (Sequence[str] | None, default: None ) –

    The order of the axes to return the array.

  • transforms (Sequence[TransformProtocol] | None, default: None ) –

    The transforms to apply to the array.

  • mode (Literal['numpy', 'dask'], default: 'numpy' ) –

    The object type to return. Can be "dask", "numpy".

  • **slicing_kwargs (SlicingInputType, default: {} ) –

    The slices to get the array.

Returns:

  • ndarray | Array

    The zarr array of the region of interest.

Source code in ngio/images/_image.py
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
def get_roi(
    self,
    roi: Roi | RoiPixels,
    channel_selection: ChannelSlicingInputType = None,
    axes_order: Sequence[str] | None = None,
    transforms: Sequence[TransformProtocol] | None = None,
    mode: Literal["numpy", "dask"] = "numpy",
    **slicing_kwargs: SlicingInputType,
) -> np.ndarray | da.Array:
    """Get the image as a zarr array for a region of interest.

    Args:
        roi: The region of interest to get the array.
        channel_selection: Select a what subset of channels to return.
            If None, all channels are returned.
        axes_order: The order of the axes to return the array.
        transforms: The transforms to apply to the array.
        mode: The object type to return.
            Can be "dask", "numpy".
        **slicing_kwargs: The slices to get the array.

    Returns:
        The zarr array of the region of interest.
    """
    _slicing_kwargs = add_channel_selection_to_slicing_dict(
        image=self, channel_selection=channel_selection, slicing_dict=slicing_kwargs
    )
    return self._get_roi(
        roi=roi,
        axes_order=axes_order,
        mode=mode,
        transforms=transforms,
        **_slicing_kwargs,
    )

set_array

set_array(
    patch: ndarray | Array,
    channel_selection: ChannelSlicingInputType = None,
    axes_order: Sequence[str] | None = None,
    transforms: Sequence[TransformProtocol] | None = None,
    **slicing_kwargs: SlicingInputType,
) -> None

Set the image array.

Parameters:

  • patch (ndarray | Array) –

    The array to set.

  • channel_selection (ChannelSlicingInputType, default: None ) –

    Select a what subset of channels to return. If None, all channels are set.

  • axes_order (Sequence[str] | None, default: None ) –

    The order of the axes to set the array.

  • transforms (Sequence[TransformProtocol] | None, default: None ) –

    The transforms to apply to the array.

  • **slicing_kwargs (SlicingInputType, default: {} ) –

    The slices to set the array.

Source code in ngio/images/_image.py
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
def set_array(
    self,
    patch: np.ndarray | da.Array,
    channel_selection: ChannelSlicingInputType = None,
    axes_order: Sequence[str] | None = None,
    transforms: Sequence[TransformProtocol] | None = None,
    **slicing_kwargs: SlicingInputType,
) -> None:
    """Set the image array.

    Args:
        patch: The array to set.
        channel_selection: Select a what subset of channels to return.
            If None, all channels are set.
        axes_order: The order of the axes to set the array.
        transforms: The transforms to apply to the array.
        **slicing_kwargs: The slices to set the array.
    """
    _slicing_kwargs = add_channel_selection_to_slicing_dict(
        image=self, channel_selection=channel_selection, slicing_dict=slicing_kwargs
    )
    self._set_array(
        patch=patch, axes_order=axes_order, transforms=transforms, **_slicing_kwargs
    )

set_roi

set_roi(
    roi: Roi | RoiPixels,
    patch: ndarray | Array,
    channel_selection: ChannelSlicingInputType = None,
    axes_order: Sequence[str] | None = None,
    transforms: Sequence[TransformProtocol] | None = None,
    **slicing_kwargs: SlicingInputType,
) -> None

Set the image array for a region of interest.

Parameters:

  • roi (Roi | RoiPixels) –

    The region of interest to set the array.

  • patch (ndarray | Array) –

    The array to set.

  • channel_selection (ChannelSlicingInputType, default: None ) –

    Select a what subset of channels to return.

  • axes_order (Sequence[str] | None, default: None ) –

    The order of the axes to set the array.

  • transforms (Sequence[TransformProtocol] | None, default: None ) –

    The transforms to apply to the array.

  • **slicing_kwargs (SlicingInputType, default: {} ) –

    The slices to set the array.

Source code in ngio/images/_image.py
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
def set_roi(
    self,
    roi: Roi | RoiPixels,
    patch: np.ndarray | da.Array,
    channel_selection: ChannelSlicingInputType = None,
    axes_order: Sequence[str] | None = None,
    transforms: Sequence[TransformProtocol] | None = None,
    **slicing_kwargs: SlicingInputType,
) -> None:
    """Set the image array for a region of interest.

    Args:
        roi: The region of interest to set the array.
        patch: The array to set.
        channel_selection: Select a what subset of channels to return.
        axes_order: The order of the axes to set the array.
        transforms: The transforms to apply to the array.
        **slicing_kwargs: The slices to set the array.
    """
    _slicing_kwargs = add_channel_selection_to_slicing_dict(
        image=self, channel_selection=channel_selection, slicing_dict=slicing_kwargs
    )
    self._set_roi(
        roi=roi,
        patch=patch,
        axes_order=axes_order,
        transforms=transforms,
        **_slicing_kwargs,
    )

consolidate

consolidate(
    order: InterpolationOrder = "linear",
    mode: Literal["dask", "numpy", "coarsen"] = "dask",
) -> None

Consolidate the label on disk.

Source code in ngio/images/_image.py
387
388
389
390
391
392
393
def consolidate(
    self,
    order: InterpolationOrder = "linear",
    mode: Literal["dask", "numpy", "coarsen"] = "dask",
) -> None:
    """Consolidate the label on disk."""
    self._consolidate(order=order, mode=mode)

Open a Label

ngio.open_label

open_label(
    store: StoreOrGroup,
    name: str | None = None,
    path: str | None = None,
    pixel_size: PixelSize | None = None,
    strict: bool = True,
    cache: bool = False,
    mode: AccessModeLiteral = "r+",
) -> Label

Open a single level label from an OME-Zarr Label group.

Parameters:

  • store (StoreOrGroup) –

    The Zarr store or group to create the image in.

  • name (str | None, default: None ) –

    The name of the label. If None, we will try to open the store as a multiscale label.

  • path (str | None, default: None ) –

    The path to the image in the ome_zarr file.

  • pixel_size (PixelSize | None, default: None ) –

    The pixel size of the image.

  • strict (bool, default: True ) –

    Only used if the pixel size is provided. If True, the pixel size must match the image pixel size exactly. If False, the closest pixel size level will be returned.

  • cache (bool, default: False ) –

    Whether to use a cache for the zarr group metadata.

  • mode (AccessModeLiteral, default: 'r+' ) –

    The access mode for the image. Defaults to "r+".

Source code in ngio/images/_ome_zarr_container.py
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
def open_label(
    store: StoreOrGroup,
    name: str | None = None,
    path: str | None = None,
    pixel_size: PixelSize | None = None,
    strict: bool = True,
    cache: bool = False,
    mode: AccessModeLiteral = "r+",
) -> Label:
    """Open a single level label from an OME-Zarr Label group.

    Args:
        store (StoreOrGroup): The Zarr store or group to create the image in.
        name (str | None): The name of the label. If None,
            we will try to open the store as a multiscale label.
        path (str | None): The path to the image in the ome_zarr file.
        pixel_size (PixelSize | None): The pixel size of the image.
        strict (bool): Only used if the pixel size is provided. If True, the
            pixel size must match the image pixel size exactly. If False, the
            closest pixel size level will be returned.
        cache (bool): Whether to use a cache for the zarr group metadata.
        mode (AccessModeLiteral): The access mode for the image. Defaults to "r+".

    """
    group_handler = ZarrGroupHandler(store, cache, mode)
    if name is None:
        label_meta_handler = find_label_meta_handler(group_handler)
        path = label_meta_handler.meta.get_dataset(
            path=path, pixel_size=pixel_size, strict=strict
        ).path
        return Label(group_handler, path, label_meta_handler)

    labels_container = LabelsContainer(group_handler)
    return labels_container.get(
        name=name,
        path=path,
        pixel_size=pixel_size,
        strict=strict,
    )

ngio.Label Class Reference

ngio.Label

Label(
    group_handler: ZarrGroupHandler,
    path: str,
    meta_handler: LabelMetaHandler | None,
)

Bases: AbstractImage[LabelMetaHandler]

Placeholder class for a label.

Initialize the Image at a single level.

Parameters:

  • group_handler (ZarrGroupHandler) –

    The Zarr group handler.

  • path (str) –

    The path to the image in the ome_zarr file.

  • meta_handler (LabelMetaHandler | None) –

    The image metadata handler.

Source code in ngio/images/_label.py
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
def __init__(
    self,
    group_handler: ZarrGroupHandler,
    path: str,
    meta_handler: LabelMetaHandler | None,
) -> None:
    """Initialize the Image at a single level.

    Args:
        group_handler: The Zarr group handler.
        path: The path to the image in the ome_zarr file.
        meta_handler: The image metadata handler.

    """
    if meta_handler is None:
        meta_handler = find_label_meta_handler(group_handler)
    super().__init__(
        group_handler=group_handler, path=path, meta_handler=meta_handler
    )

path property

path: str

Return the path of the image.

meta_handler property

meta_handler: _image_handler

Return the metadata.

dataset property

dataset: Dataset

Return the dataset of the image.

dimensions property

dimensions: Dimensions

Return the dimensions of the image.

pixel_size property

pixel_size: PixelSize

Return the pixel size of the image.

axes_handler property

axes_handler: AxesHandler

Return the axes handler of the image.

axes property

axes: tuple[str, ...]

Return the axes of the image.

zarr_array property

zarr_array: Array

Return the Zarr array.

shape property

shape: tuple[int, ...]

Return the shape of the image.

dtype property

dtype: str

Return the dtype of the image.

chunks property

chunks: tuple[int, ...]

Return the chunks of the image.

is_3d property

is_3d: bool

Return True if the image is 3D.

is_2d property

is_2d: bool

Return True if the image is 2D.

is_time_series property

is_time_series: bool

Return True if the image is a time series.

is_2d_time_series property

is_2d_time_series: bool

Return True if the image is a 2D time series.

is_3d_time_series property

is_3d_time_series: bool

Return True if the image is a 3D time series.

is_multi_channels property

is_multi_channels: bool

Return True if the image is multichannel.

space_unit property

space_unit: str | None

Return the space unit of the image.

time_unit property

time_unit: str | None

Return the time unit of the image.

get_as_numpy class-attribute instance-attribute

get_as_numpy = _get_as_numpy

get_as_dask class-attribute instance-attribute

get_as_dask = _get_as_dask

get_array class-attribute instance-attribute

get_array = _get_array

get_roi_as_numpy class-attribute instance-attribute

get_roi_as_numpy = _get_roi_as_numpy

get_roi_as_dask class-attribute instance-attribute

get_roi_as_dask = _get_roi_as_dask

get_roi class-attribute instance-attribute

get_roi = _get_roi

set_array class-attribute instance-attribute

set_array = _set_array

set_roi class-attribute instance-attribute

set_roi = _set_roi

meta property

meta: NgioLabelMeta

Return the metadata.

has_axis

has_axis(axis: str) -> bool

Return True if the image has the given axis.

Source code in ngio/images/_abstract_image.py
174
175
176
def has_axis(self, axis: str) -> bool:
    """Return True if the image has the given axis."""
    return self.axes_handler.has_axis(axis)

roi

roi(name: str | None = 'image') -> Roi

Return the ROI covering the entire image.

Source code in ngio/images/_abstract_image.py
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
def roi(self, name: str | None = "image") -> Roi:
    """Return the ROI covering the entire image."""
    dim_x = self.dimensions.get("x")
    dim_y = self.dimensions.get("y")
    assert dim_x is not None and dim_y is not None
    dim_z = self.dimensions.get("z")
    z = None if dim_z is None else 0
    dim_t = self.dimensions.get("t")
    t = None if dim_t is None else 0
    roi_px = RoiPixels(
        name=name,
        x=0,
        y=0,
        z=z,
        t=t,
        x_length=dim_x,
        y_length=dim_y,
        z_length=dim_z,
        t_length=dim_t,
    )
    return roi_px.to_roi(pixel_size=self.pixel_size)

build_image_roi_table

build_image_roi_table(
    name: str | None = "image",
) -> RoiTable

Build the ROI table containing the ROI covering the entire image.

Source code in ngio/images/_abstract_image.py
467
468
469
def build_image_roi_table(self, name: str | None = "image") -> RoiTable:
    """Build the ROI table containing the ROI covering the entire image."""
    return RoiTable(rois=[self.roi(name=name)])

require_dimensions_match

require_dimensions_match(
    other: AbstractImage, allow_singleton: bool = False
) -> None

Assert that two images have matching spatial dimensions.

Parameters:

  • other (AbstractImage) –

    The other image to compare to.

  • allow_singleton (bool, default: False ) –

    If True, allow singleton dimensions to be compatible with non-singleton dimensions.

Raises:

  • NgioValueError

    If the images do not have compatible dimensions.

Source code in ngio/images/_abstract_image.py
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
def require_dimensions_match(
    self,
    other: "AbstractImage",
    allow_singleton: bool = False,
) -> None:
    """Assert that two images have matching spatial dimensions.

    Args:
        other: The other image to compare to.
        allow_singleton: If True, allow singleton dimensions to be
            compatible with non-singleton dimensions.

    Raises:
        NgioValueError: If the images do not have compatible dimensions.
    """
    self.dimensions.require_dimensions_match(
        other.dimensions, allow_singleton=allow_singleton
    )

check_if_dimensions_match

check_if_dimensions_match(
    other: AbstractImage, allow_singleton: bool = False
) -> bool

Check if two images have matching spatial dimensions.

Parameters:

  • other (AbstractImage) –

    The other image to compare to.

  • allow_singleton (bool, default: False ) –

    If True, allow singleton dimensions to be compatible with non-singleton dimensions.

Returns:

  • bool ( bool ) –

    True if the images have matching dimensions, False otherwise.

Source code in ngio/images/_abstract_image.py
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
def check_if_dimensions_match(
    self,
    other: "AbstractImage",
    allow_singleton: bool = False,
) -> bool:
    """Check if two images have matching spatial dimensions.

    Args:
        other: The other image to compare to.
        allow_singleton: If True, allow singleton dimensions to be
            compatible with non-singleton dimensions.

    Returns:
        bool: True if the images have matching dimensions, False otherwise.
    """
    return self.dimensions.check_if_dimensions_match(
        other.dimensions, allow_singleton=allow_singleton
    )

require_axes_match

require_axes_match(other: AbstractImage) -> None

Assert that two images have compatible axes.

Parameters:

  • other (AbstractImage) –

    The other image to compare to.

Raises:

  • NgioValueError

    If the images do not have compatible axes.

Source code in ngio/images/_abstract_image.py
509
510
511
512
513
514
515
516
517
518
519
520
521
def require_axes_match(
    self,
    other: "AbstractImage",
) -> None:
    """Assert that two images have compatible axes.

    Args:
        other: The other image to compare to.

    Raises:
        NgioValueError: If the images do not have compatible axes.
    """
    self.dimensions.require_axes_match(other.dimensions)

check_if_axes_match

check_if_axes_match(other: AbstractImage) -> bool

Check if two images have compatible axes.

Parameters:

  • other (AbstractImage) –

    The other image to compare to.

Returns:

  • bool ( bool ) –

    True if the images have compatible axes, False otherwise.

Source code in ngio/images/_abstract_image.py
523
524
525
526
527
528
529
530
531
532
533
534
535
536
def check_if_axes_match(
    self,
    other: "AbstractImage",
) -> bool:
    """Check if two images have compatible axes.

    Args:
        other: The other image to compare to.

    Returns:
        bool: True if the images have compatible axes, False otherwise.

    """
    return self.dimensions.check_if_axes_match(other.dimensions)

require_rescalable

require_rescalable(other: AbstractImage) -> None

Assert that two images can be rescaled to each other.

For this to be true, the images must have the same axes, and the pixel sizes must be compatible (i.e. one can be scaled to the other).

Parameters:

  • other (AbstractImage) –

    The other image to compare to.

Raises:

  • NgioValueError

    If the images cannot be scaled to each other.

Source code in ngio/images/_abstract_image.py
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
def require_rescalable(
    self,
    other: "AbstractImage",
) -> None:
    """Assert that two images can be rescaled to each other.

    For this to be true, the images must have the same axes, and
    the pixel sizes must be compatible (i.e. one can be scaled to the other).

    Args:
        other: The other image to compare to.

    Raises:
        NgioValueError: If the images cannot be scaled to each other.
    """
    self.dimensions.require_rescalable(other.dimensions)

check_if_rescalable

check_if_rescalable(other: AbstractImage) -> bool

Check if two images can be rescaled to each other.

For this to be true, the images must have the same axes, and the pixel sizes must be compatible (i.e. one can be scaled to the other).

Parameters:

  • other (AbstractImage) –

    The other image to compare to.

Returns:

  • bool ( bool ) –

    True if the images can be rescaled to each other, False otherwise.

Source code in ngio/images/_abstract_image.py
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
def check_if_rescalable(
    self,
    other: "AbstractImage",
) -> bool:
    """Check if two images can be rescaled to each other.

    For this to be true, the images must have the same axes, and
    the pixel sizes must be compatible (i.e. one can be scaled to the other).

    Args:
        other: The other image to compare to.

    Returns:
        bool: True if the images can be rescaled to each other, False otherwise.
    """
    return self.dimensions.check_if_rescalable(other.dimensions)

set_axes_unit

set_axes_unit(
    space_unit: SpaceUnits = DefaultSpaceUnit,
    time_unit: TimeUnits = DefaultTimeUnit,
) -> None

Set the axes unit of the image.

Parameters:

  • space_unit (SpaceUnits, default: DefaultSpaceUnit ) –

    The space unit of the image.

  • time_unit (TimeUnits, default: DefaultTimeUnit ) –

    The time unit of the image.

Source code in ngio/images/_label.py
74
75
76
77
78
79
80
81
82
83
84
85
86
87
def set_axes_unit(
    self,
    space_unit: SpaceUnits = DefaultSpaceUnit,
    time_unit: TimeUnits = DefaultTimeUnit,
) -> None:
    """Set the axes unit of the image.

    Args:
        space_unit (SpaceUnits): The space unit of the image.
        time_unit (TimeUnits): The time unit of the image.
    """
    meta = self.meta
    meta = meta.to_units(space_unit=space_unit, time_unit=time_unit)
    self._meta_handler.write_meta(meta)

build_masking_roi_table

build_masking_roi_table() -> MaskingRoiTable

Compute the masking ROI table.

Source code in ngio/images/_label.py
89
90
91
def build_masking_roi_table(self) -> MaskingRoiTable:
    """Compute the masking ROI table."""
    return build_masking_roi_table(self)

consolidate

consolidate(
    mode: Literal["dask", "numpy", "coarsen"] = "dask",
) -> None

Consolidate the label on disk.

Source code in ngio/images/_label.py
 93
 94
 95
 96
 97
 98
 99
100
101
def consolidate(
    self,
    mode: Literal["dask", "numpy", "coarsen"] = "dask",
) -> None:
    """Consolidate the label on disk."""
    self._consolidate(
        order="nearest",
        mode=mode,
    )